최근 수정 시각 : 2025-08-18 12:07:11

오일러-라그랑주 방정식


파일:다른 뜻 아이콘.svg  
#!if 넘어옴1 != null
''''''{{{#!if 넘어옴2 == null
{{{#!if 넘어옴1[넘어옴1.length - 1] >= 0xAC00 && 넘어옴1[넘어옴1.length - 1] <= 0xD7A3
{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴1[넘어옴1.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴1[넘어옴1.length - 1] < 0xAC00 || 넘어옴1[넘어옴1.length - 1] > 0xD7A3
은(는)}}}}}}{{{#!if 넘어옴2 != null
, ''''''{{{#!if 넘어옴3 == null
{{{#!if 넘어옴2[넘어옴2.length - 1] >= 0xAC00 && 넘어옴2[넘어옴2.length - 1] <= 0xD7A3
{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴2[넘어옴2.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴2[넘어옴2.length - 1] < 0xAC00 || 넘어옴2[넘어옴2.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴3 != null
, ''''''{{{#!if 넘어옴4 == null
{{{#!if 넘어옴3[넘어옴3.length - 1] >= 0xAC00 && 넘어옴3[넘어옴3.length - 1] <= 0xD7A3
{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴3[넘어옴3.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴3[넘어옴3.length - 1] < 0xAC00 || 넘어옴3[넘어옴3.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴4 != null
, ''''''{{{#!if 넘어옴5 == null
{{{#!if 넘어옴4[넘어옴4.length - 1] >= 0xAC00 && 넘어옴4[넘어옴4.length - 1] <= 0xD7A3
{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴4[넘어옴4.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴4[넘어옴4.length - 1] < 0xAC00 || 넘어옴4[넘어옴4.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴5 != null
, ''''''{{{#!if 넘어옴6 == null
{{{#!if 넘어옴5[넘어옴5.length - 1] >= 0xAC00 && 넘어옴5[넘어옴5.length - 1] <= 0xD7A3
{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴5[넘어옴5.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴5[넘어옴5.length - 1] < 0xAC00 || 넘어옴5[넘어옴5.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴6 != null
, ''''''{{{#!if 넘어옴7 == null
{{{#!if 넘어옴6[넘어옴6.length - 1] >= 0xAC00 && 넘어옴6[넘어옴6.length - 1] <= 0xD7A3
{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴6[넘어옴6.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴6[넘어옴6.length - 1] < 0xAC00 || 넘어옴6[넘어옴6.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴7 != null
, ''''''{{{#!if 넘어옴8 == null
{{{#!if 넘어옴7[넘어옴7.length - 1] >= 0xAC00 && 넘어옴7[넘어옴7.length - 1] <= 0xD7A3
{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴7[넘어옴7.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴7[넘어옴7.length - 1] < 0xAC00 || 넘어옴7[넘어옴7.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴8 != null
, ''''''{{{#!if 넘어옴9 == null
{{{#!if 넘어옴8[넘어옴8.length - 1] >= 0xAC00 && 넘어옴8[넘어옴8.length - 1] <= 0xD7A3
{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴8[넘어옴8.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴8[넘어옴8.length - 1] < 0xAC00 || 넘어옴8[넘어옴8.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴9 != null
, ''''''{{{#!if 넘어옴10 == null
{{{#!if 넘어옴9[넘어옴9.length - 1] >= 0xAC00 && 넘어옴9[넘어옴9.length - 1] <= 0xD7A3
{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴9[넘어옴9.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴9[넘어옴9.length - 1] < 0xAC00 || 넘어옴9[넘어옴9.length - 1] > 0xD7A3
은(는)}}}}}}}}}{{{#!if 넘어옴10 != null
, ''''''{{{#!if 넘어옴10[넘어옴10.length - 1] >= 0xAC00 && 넘어옴10[넘어옴10.length - 1] <= 0xD7A3
{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) == 0
는}}}{{{#!if ((넘어옴10[넘어옴10.length - 1] - 0xAC00) % 28) != 0
은}}}}}}{{{#!if 넘어옴10[넘어옴10.length - 1] < 0xAC00 || 넘어옴10[넘어옴10.length - 1] > 0xD7A3
은(는)}}}}}} 여기로 연결됩니다. 
#!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 유체역학에서의 편미분 방정식}}}에 대한 내용은 [[오일러 방정식]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[오일러 방정식#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[오일러 방정식#|]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}
#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.

#!if 리스트 != null
{{{#!if 문서명1 != null
 * {{{#!if 설명1 != null
유체역학에서의 편미분 방정식: }}}[[오일러 방정식]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[오일러 방정식#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[오일러 방정식#|]] 부분}}}}}}{{{#!if 문서명2 != null
 * {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
 * {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
 * {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
 * {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
 * {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
 * {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
 * {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
 * {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
 * {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}

해석학·미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사(어림)
수열·급수 수열(규칙과 대응) · 급수(기하급수 · 조화급수 · 멱급수 · 테일러 급수(/목록) · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱 · 피보나치 수열
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수(이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분(/예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분(코시 주욧값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분 편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식 미분방정식(/풀이) · 라플라스 변환
실해석· 측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수(주부) · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · [math(L^p)] 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 바나흐 대수 · [math(C^*)]-대수 · 폰 노이만 대수
정리 바나흐-앨러오글루 정리 · 베르 범주 정리 · 스펙트럼 정리 · 한-바나흐 정리
이론 범함수 미적분학 · 디랙 델타 함수(분포이론)
조화해석 푸리에 해석(푸리에 변환 · 아다마르 변환)
동역학계 에르고딕 이론 · 복소 동역학 · 망델브로 집합 · 줄리아 집합
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학(양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학(경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||

<bgcolor=#614a0a> 고전역학
Classical Mechanics
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#614a0a><colcolor=#fff> 기본 개념 텐서(스칼라 · 벡터) · 모멘트 · 위치 · 거리(변위 · 이동거리) · 시간 · 공간 · 질량(질량중심) · 속력(속도 · 가속도) · 운동(운동량) · · 합력 · 뉴턴의 운동법칙 · (일률) · 에너지(퍼텐셜 에너지 · 운동 에너지) · 보존력 · 운동량 보존의 법칙 · 에너지 보존 법칙 · 질량 보존 법칙 · 운동 방정식
동역학 관성 좌표계 · 비관성 좌표계(관성력) · 항력(수직항력 · 마찰력) · 등속직선운동 · 등가속도 운동 · 자유 낙하 · 포물선 운동 · 원운동(구심력 · 원심력 · 등속 원운동) · 전향력 · 운동학 · 질점의 운동역학 · 입자계의 운동역학 · 운동 방정식
정역학 강체 역학 정적 평형 · 블록 쌓기 문제 · 강체 · 응력(/응용) · 충돌 · 충격량 · 각속도(각가속도) · 각운동량(각운동량 보존 법칙 · 떨어지는 고양이 문제) · 토크(비틀림) · 관성 모멘트 · 관성 텐서 · 우력 · 반력 · 탄성력(후크 법칙 · 탄성의 한계) · 구성방정식 · 장동 · 소성 · 고체역학
천체 역학 중심력 · 만유인력의 법칙 · 이체문제(케플러의 법칙) · 기조력 · 삼체문제(라그랑주점) · 궤도역학 · 수정 뉴턴 역학 · 비리얼 정리
진동 파동 각진동수 · 진동수 · 주기 · 파장 · 파수 · 스넬의 법칙 · 전반사 · 하위헌스 원리 · 페르마의 원리 · 간섭 · 회절 · 조화 진동자 · 산란 · 진동학 · 파동방정식 · 막의 진동 · 정상파 · 결합된 진동 · 도플러 효과 · 음향학
해석 역학 일반화 좌표계(자유도) · 변분법{오일러 방정식(벨트라미 항등식)} · 라그랑주 역학(해밀턴의 원리 · 라그랑지안 · 작용) · 해밀턴 역학(해밀토니안 · 푸아송 괄호 · 정준 변환 · 해밀턴-야코비 방정식 · 위상 공간) · 뇌터 정리 · 르장드르 변환 · 고전장론
응용 및 기타 문서 기계공학(기계공학 둘러보기) · 건축학(건축공학 · 구조역학) · 토목공학 · 치올코프스키 로켓 방정식 · 탄도학(탄도 계수) · 자이로스코프 · 공명 · 운동 방정식 · 진자(단진자) · 사이클로이드 }}}}}}}}}


1. 개요
1.1. 정의1.2. 유도
1.2.1. 오일러 미분방정식
1.3. 벨트라미 항등식
1.3.1. 예제
1.4. 응용
2. 관련 문서

1. 개요

오일러-라그랑주 방정식(Euler-Lagrange equation)은 변분법고전역학에서 쓰이는 2계 상미분방정식으로 레온하르트 오일러조제프루이 라그랑주에 의해 정립되었다.
변분법에서 범함수의 최소, 최대를 찾는 방법으로 개발된 방정식이다.

유체역학에서의 오일러 방정식은 다른 개념이이므로 주의. 또한 오일러 등식과도 다르다.

1.1. 정의

변수를 하나만 가지는 함수 [math(y(x))]와 그 도함수 [math(y'(x))]를 변수로 가지는 어떤 범함수(functional) [math(J)] 가 있다고 하자.
[math(\displaystyle J = \int_{x_1}^{x_2} f(y(x),\,y'(x),\,x){\rm\,d}x)][1]
이러한 범함수극값(극대 또는 극소)을 주는 함수 [math(f)]가 만족시키는 미분방정식은 다음과 같다.
[math(\dfrac{\partial f}{\partial y} - \dfrac{\rm d}{{\rm d}x}\dfrac{\partial f}{\partial y'} = 0)]
이 미분방정식을 오일러-라그랑주 방정식이라고 한다.

1.2. 유도

우선 일반적인 경우를 증명하기 전에 이해를 돕기 위해서 다음 예시를 먼저 살펴보자.
두 점을 잇는 가장 짧은 곡선은 직선임을 보여라.

먼저, 두 점을 잇는 선을 어떤 현악기의 줄이라고 보고, 그 줄의 길이를 [math(L)]이라 하자.
파일:오일러1.png
그 다음 줄을 손으로 1 mm 정도 잡아당겨 보자. 그럼 아래 그림처럼 줄이 휘어질 것이다. (그림은 과장해서 그렸다)
파일:오일러2.png
줄을 함수의 그래프와 같은 것이라고 보고, 이렇게 휘어진 줄과 원래 직선과의 차이를 [math(\eta(x))]라고 하자. 즉 [math(x)]축이 바이올린의 줄과 평행한 좌표계에서 처음 상태를 [math(f(x))]라고 하고 휘어진 그래프를 [math(g(x))]라고 하면 [math(\eta(x) = g(x)-f(x))]인 것이다. 그런 데 줄의 끝 좌표는 각각 [math(x_1)], [math(x_2)]로 고정되어 있다. 즉 차이가 없는 것이다. 따라서 [math(\eta(x_1) = \eta(x_2) = 0)]이다.

그럼 여기서 줄을 5 mm 정도로 더 잡아당기면 어떻게 될까? 차이가 5배로 커질 것이다. 즉 차이는 [math(5\eta(x))]가 된다.
마찬가지로, 2 mm를 잡아당기면 차이는 대략 [math(2\eta(x))]이고, 10 mm를 잡아당기면 [math(10\eta(x))]이고, 아니면 반대 방향으로 3 mm를 잡아당기면 차이는 [math(-3\eta(x))]가 될 것이다. 즉 [math(\alpha)] mm 잡아당기면 차이는 [math(\alpha\eta(x))]가 된다.

이렇듯 줄의 모양, 즉 함수의 그래프 모양은 [math(x)]뿐만 아니라 잡아당긴 정도 [math(\alpha)]에도 의존한다는 것을 알 수 있다. 이를 [math(g(x) = y(\alpha,\,x))]로 나타내면, 아래 그림과 같이 나타낼 수 있고 악기를 가만히 놔뒀을 때 줄은 직선(최단거리)이며 이는 [math(y(0,\,x) = y(x))]이다.
파일:오일러3.png
즉 줄을 5 mm 잡아당긴 함수는 [math(y(5,\,x))]이고, 반대쪽으로 3 mm 잡아당기면 [math(y(-3,\,x))]이다. 그런데 아까 줄을 [math(\alpha)] mm 잡아당기면 원래 상태와의 차이는 [math(\alpha\eta(x))]가 된다고 했다. 따라서 다음과 같이 쓸 수 있다.
[math(y(\alpha,\,x)=y(0,\,x)+\alpha\eta(x))]
(잡아당긴 줄은, 원래 줄에다가 잡아당김을 더한 것이다.)

즉, 그래프 [math(y)]는 이제 [math(\alpha)]에 따라 변하는 함수가 된 것이다. 예를 들어, 줄을 튕겨서 진동시키는 것은 [math(\alpha)]를 진동시키는 것이라고 생각하면 된다. 그러면 당연히 줄의 길이 [math(L)]도 [math(\alpha)]에 대한 함수가 된다! 예를 들어, 원래 길이가 50 cm였는데 줄을 잡아당기면 51 cm가 될 수도 있는 것이다. 그러면 줄의 길이 [math(L)]를 잡아당긴 거리 [math(\alpha)]에 따라 그래프를 그릴 수 있다.
파일:오일러4.png

그런데 줄이 가장 짧을 때는 언제일까? 당연히 하나도 안 잡아당겼을 때, 즉 [math(\alpha=0)]일 때이다. 그리고 미적분을 배우면 알겠지만 [math(\alpha = 0)]에서 줄의 길이가 극소가 된다는 것은 미분계수가 0이라는 것을 의미한다.
[math({\left.\dfrac{\partial L}{\partial\alpha}\right|}_{\alpha=0} = 0)]
결국 위 식을 풀면 최단거리는 직선일 때임을 증명할 수 있다. 이제 계산을 해 보자.
두 점 사이의 곡선의 길이 공식은 다음과 같다.
[math(\displaystyle L = \int_{x_1}^{x_2}\sqrt{1+{y'}^2}{\rm\,d}x)]
이때 [math(f = \sqrt{1+{y'}^2})]라고 하면 [math(\displaystyle L = \int_{x_1}^{x_2}f{\rm\,d}x)]라고 쓸 수 있다. 적분의 위끝 아래끝이 상수이므로 적분 기호 안에서 미분해도 된다. 이것을 [math(\alpha)]로 미분하면
[math(\begin{aligned} \frac{\partial L}{\partial\alpha} &= \frac\partial{\partial\alpha} \int_{x_1}^{x_2}f{\rm\,d}x \\
&= \int_{x_1}^{x_2} \frac{\partial f}{\partial\alpha}{\rm\,d}x \end{aligned})]
이 되는데, 그래프가 직선이라면 위 식은 0이 되어야 한다. 여기서 연쇄 법칙(합성함수의 미분법)을 쓰면, [math(\cfrac{\partial f}{\partial\alpha} = \cfrac{\partial f}{\partial y'}\cfrac{\partial y'}{\partial\alpha})]이다. 이를 적용하면
[math(\begin{aligned} \frac{\partial L}{\partial\alpha} &= \int_{x_1}^{x_2} \frac{\partial f}{\partial y'}\frac{\partial y'}{\partial\alpha}{\rm\,d}x \\
&= \int_{x_1}^{x_2} \frac{y'}{\sqrt{1+{y'}^2}} \frac{\partial y'}{\partial\alpha}{\rm\,d}x \\
&= 0 \end{aligned})]
한편, 위에서 [math(y(\alpha,\,x)=y(0,x) + \alpha\eta(x))]라는 관계식을 보자. 이를 [math(x)]로 미분해서 도함수를 구하면 [math(y'(\alpha,\,x) = y'(0,\,x) + \alpha\eta'(x))]이다. 그런데 이것을 다시 [math(\alpha)]로 편미분[2]하면 [math(\cfrac{\partial y'}{\partial\alpha} = \eta'(x))]이다. 이를 대입하면
[math(\begin{aligned} \frac{\partial L}{\partial\alpha} &= \int_{x_1}^{x_2} \frac{y'}{\sqrt{1+{y'}^2}}\eta'(x){\rm\,d}x \\
&= 0 \end{aligned})]
그런데 이 적분은 부분적분이 되는 꼴이다. [math(\eta'(x))]를 적분, [math(\dfrac{y'}{\sqrt{1+{y'}^2}})]를 미분할 함수로 두면 된다. 이를 계산하면 다음 식을 얻는다.
[math(\begin{aligned} \frac{\partial L}{\partial\alpha} &= {\left[ \frac{y'}{\sqrt{1+{y'}^2}}\eta(x) \right]}_{x_1}^{x_2} - \int_{x_1}^{x_2} \eta(x)\frac{\rm d}{{\rm d}x}{\left( \frac{y'}{\sqrt{1+{y'}^2}}\right)}{\rm\,d}x \\ &= 0 \end{aligned})]
그런데 아까 줄의 끝이 고정되어 있다고 했다. 즉 [math( \eta (x_1) = \eta (x_2) = 0 )]이므로, 제1항은 0이다. 그러면 뒤에 있는 적분이 남는다.
[math(\begin{aligned} \frac{\partial L}{\partial\alpha} &= -\int_{x_1}^{x_2} \eta(x) \frac{\rm d}{{\rm d}x} {\left( \frac{y'}{\sqrt{1+{y'}^2}} \right)}{\rm\,d}x \\
&= 0\end{aligned})]
여기서 잘 생각해 보자. [math(\eta(x))]는 잡아당긴 줄과 원래 줄의 차이었다. 그런데 줄을 한 손가락으로 당길 수도 있는 것이고, 두 손가락으로 당길 수도 있는 것이고, 활로 그을 수도 있고, 줄 맨 끝을 튕길 수도 있고, 정중앙에 손가락을 대고 튕겨서 하모닉스 소리를 낼 수도 있는 것이다. 이게 무슨 말이냐면, [math(\eta(x))]가 도대체 어떻게 생겼는지 알 수가 없다는 것이다. 즉 어떤 모양의 [math(\eta(x))]를 가져와도 무조건 저 식이 0이 되도록 해야 한다. 항등식의 성질을 생각해 보면 대괄호 안이 0이 되는 수밖에 없다는 것을 알아챌 수 있을 것이다.[3] 따라서
[math(\dfrac{\rm d}{{\rm d}x}{\left( \dfrac{y'}{\sqrt{1+{y'}^2}} \right)} = 0)]
이어야 한다. 양변을 [math(x)]로 적분하면
[math(\dfrac{y'}{\sqrt{1+{y'}^2}} = C)]
이고, [math(C)]는 적분상수이다. 이를 [math(y')]에 대하여 정리하면
[math(y' = \sqrt{ \dfrac{C^2}{1 - C^2}})]
이고 위 값 역시 상수이다. 이를 [math(a)]라고 하면 [math(y)]는 기울기가 [math(a)]로 일정한 직선이다. 즉 [math(y = ax+b)]를 얻는다!
여기까지가 오일러 방정식을 유도하는 과정을 예로 들어 본 것이다. 이제 일반적인 범함수에서 오일러 방정식을 유도해 보자.

1.2.1. 오일러 미분방정식

한 지점 [math((x_1,\,y_1))]에서 다른 지점 [math((x_2,\,y_2))]까지 적분으로 정의된 범함수
[math(\displaystyle J = \int_{x_1}^{x_2} f(y(x),\,y'(x),\,x){\rm\,d}x)]
를 생각해 보자. 우리의 목표는 이러한 [math(J)]가 극값(극대 또는 극소)가 되는 [math(y(x))]를 찾는 것이고, 이때의 [math(y(x))]를 [math(y(0,\,x))]라고 하자. 그러면 가능한 모든 [math(y(x))]를 아래 그림처럼 다음과 같은 꼴로 쓸 수 있다.
[math(y(\alpha,\,x) = y(0,\,x)+\alpha\eta(x))]
파일:변분법.png

이때 [math(\eta(x))]는 미분 가능하고 [math(\eta(x_1) = \eta(x_2) = 0)]을 만족하는 임의의 함수이고, [math(\alpha)]는 임의의 작은 실수이다. 위 식의 의미는 [math(y(\alpha,\,x))]가 정답으로부터 [math(\alpha\eta(x))]만큼 살짝 벗어나 있다는 것이다. 이제 [math(J)]는 다음과 같이 [math(\alpha)]에 대한 함수가 되었다.
[math(\displaystyle J(\alpha) = \int_{x_1}^{x_2} f(y(\alpha,\,x),\,y'(\alpha,\,x),\,x){\rm\,d}x)]
그런데 [math(\alpha = 0)]를 대입하면 [math(y(\alpha,\,x))]는 [math(y(0,\,x))], 즉 극값이 된다. [math(\alpha = 0)]에서 극값을 가진다는 것을 수학적으로 표현하면 다음과 같다.
[math({\left.\dfrac{\partial J}{\partial\alpha}\right|}_{\alpha = 0} = 0)][4]
이제 편미분을 계산해 보자. [math(J)]를 [math(\alpha)]로 편미분하면 다음과 같다.
[math(\displaystyle \frac{\partial J}{\partial\alpha} = \frac\partial{\partial\alpha} \int_{x_1}^{x_2} f(y,\,y';\,x){\rm\,d}x)]
그런데 적분 기호의 위끝과 아래끝은 상수이므로, 적분 기호 안에서 미분할 수 있다. 다변수 함수 [math(f)]에 연쇄 법칙을 이용하면 위 식은 다음과 같이 쓸 수 있다.
[math(\displaystyle \frac{\partial J}{\partial\alpha} = \int_{x_1}^{x_2} {\left( \frac{\partial f}{\partial y} \frac{\partial y}{\partial\alpha} + \frac{\partial f}{\partial y'} \frac{\partial y'}{\partial\alpha} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial \alpha}\right)}{\rm\,d}x)]
그런데 [math(y(\alpha,\,x) = y(0,\,x) + \alpha\eta(x))]이고, 양변을 [math(x)]로 미분하면 [math(y'(\alpha,\,x) = y'(0,\,x) + \alpha\eta'(x))]가 된다. 그리고 [math(\alpha)]로 편미분한다는 것은 [math(x)]를 상수로 취급한다는 것이기에 [math(\cfrac{\partial x}{ \partial\alpha} = 0)]이다. 하지만 [math(y)] 및 [math(y')]은 [math(\alpha)]에 대한 함수라는 것에 주목하자.[5] 따라서 각 변수를 [math(\alpha)]로 편미분하면 다음을 얻는다.
[math(\begin{cases} \cfrac{\partial y}{\partial\alpha} = \eta(x) \\
\cfrac{\partial y'}{\partial\alpha} = \eta'(x) \\
\cfrac{\partial x}{\partial\alpha} = 0 \end{cases})]
이를 위 식에 대입하면,
[math(\displaystyle \frac{\partial J}{\partial\alpha} = \int_{x_1}^{x_2} {\left( \frac{\partial f}{\partial y}\eta(x) + \frac{\partial f}{\partial y'} \eta'(x) \right)}{\rm\,d}x)]
여기서 두 번째 항의 [math(\eta'(x))]를 적분, [math(\cfrac{\partial f}{\partial y'})]를 미분할 함수로 두고 부분적분법을 적용하면 다음과 같다.
[math(\displaystyle \frac{\partial J}{\partial\alpha} = \int_{x_1}^{x_2} \frac{\partial f}{\partial y}\eta(x){\rm\,d}x + {\left[ \frac{\partial f}{\partial y'} \eta(x) \right]}_{x_1}^{x_2} - \int_{x_1}^{x_2} \eta(x)\frac{\rm d}{{\rm d}x} {\left( \frac{\partial f}{\partial y'} \right)}{\rm\,d}x)]
위에서 [math(\eta(x))]를 정의할 때 [math(\eta(x_1) = \eta(x_2) = 0)]이었으므로 제2항은 0이 된다. 나머지를 [math(\eta(x))]로 묶어서 정리하면
[math(\displaystyle \frac{\partial J}{\partial\alpha} = \int_{x_1}^{x_2} \eta(x){\left( \frac{\partial f}{\partial y} - \frac{\rm d}{{\rm d}x} \frac{\partial f}{\partial y'}\right)}{\rm\,d}x)]
이 되고, 이것이 0이 되어야 한다. 그런데 이 식은 임의의 [math(\eta(x))]에 대하여 항상 0이 되어야 하므로, 결국 괄호 안 전체가 0이 되는 방법밖에 없다.[6] 따라서 다음의 오일러 방정식을 얻는다.
[math(\dfrac{\partial f}{\partial y} - \dfrac{\rm d}{{\rm d}x}\dfrac{\partial f}{\partial y'} = 0)]

1.3. 벨트라미 항등식

오일러 방정식을 풀 때, 위의 예제처럼 [math(f)]가 [math(y')], [math(x)]만의 함수이고, [math(y)]와는 독립일 경우 첫째 항 [math(\cfrac{\partial f}{\partial y})]가 사라지기 때문에 풀기 쉽다. 한편, [math(f)]가 [math(y)], [math(y')]만의 함수이고 [math(x)]는 들어가지 않을 때, 즉 [math(f = f(y,\,y'))]일 때도 쉽게 변형해서 푸는 방법이 있는데, 이를 벨트라미 항등식(Beltrami identity)라고 한다. [math(\cfrac{\partial f}{\partial x} = 0)]일 때, 오일러 방정식은 다음 방정식과 동치이다.
[math(f - y'\cfrac{\partial f}{\partial y'} = {\sf const.})]
참고로, 좌변은 [math(f)]를 [math(y')]에 대해 르장드르 변환한 것이다.
{{{#!folding [ 증명 보기 · 숨기기 ]
[math(f)]는 [math(y)], [math(y')]의 함수이다. 따라서 연쇄 법칙에 의해
[math(\begin{aligned} \frac{{\rm d}f}{{\rm d}x} &= \frac{\partial f}{\partial y} \frac{{\rm d}y}{{\rm d}x} + \frac{\partial f}{\partial y'}\frac{{\rm d}y'}{{\rm d}x}\\
&= y'\frac{\partial f}{\partial y} + y''\frac{\partial f}{\partial y'} \end{aligned})]
한편, [math(y'\cfrac{\partial f}{\partial y'})]를 [math(x)]로 미분하면 곱의 미분법에 의해
[math(\dfrac{\rm d}{{\rm d}x}{\left(y'\dfrac{\partial f}{\partial y'}\right)} = y''\dfrac{\partial f}{\partial y'} + y'\dfrac{\rm d}{{\rm d}x}\dfrac{\partial f}{\partial y'})]
위 두 식에서 [math(y''\cfrac{\partial f}{\partial y'})]를 소거하면
[math(\dfrac{\rm d}{{\rm d}x}{\left(y'\dfrac{\partial f}{\partial y'}\right)} = \dfrac{{\rm d}f}{{\rm d}x} - y'\dfrac{\partial f}{\partial y} + y'\dfrac{\rm d}{{\rm d}x} \dfrac{\partial f}{\partial y'})]
우변의 마지막 두 항은 [math(y')]으로 묶을 수 있다. 좌변을 우변으로 이항하고 정리하면
[math(\dfrac{\rm d}{{\rm d}x} {\left( f - y'\dfrac{\partial f}{\partial y'} \right)} - y'{\left( \dfrac{\partial f}{\partial y} - \dfrac{\rm d}{{\rm d}x} \dfrac{\partial f}{\partial y'} \right)} = 0)]
그런데 마지막 괄호 안에 있는 식은 오일러 방정식이랑 똑같은 모양이다! 따라서 괄호 안은 0이 되어서 사라진다. 남은 항을 [math(x)]로 적분하면 증명이 끝난다.
[math(f - y'\dfrac{\partial f}{\partial y'} = {\sf const.})]
}}} ||
참고로 이 식의 [math(f)]에 라그랑지언 [math(\mathscr L)]을 대입하면 이는 해밀토니언 [math(\mathcal H)]의 정의가 된다! 따라서 이는 해밀토니언이 보존된다는 결과를 의미한다.

1.3.1. 예제

[math((x_1,\,y_1))]과 [math((x_2,\,y_2))]를 이은 곡선을 [math(x)]축을 중심으로 회전한 회전체의 겉넓이가 최소가 되는 경로를 찾아보자. 회전체의 겉넓이 [math(S)]는
[math(\displaystyle S = \int_{x_1}^{x_2}2\pi y \sqrt{1 + {y'}^2}{\rm\,d}x)]
이다. 그런데 적분변수를 [math({\rm d}y)]로 치환하면
[math(\begin{aligned} S &= \int_{x_1}^{x_2} 2\pi y \sqrt{1 + {y'}^2}{\rm\,d}x \\
&= \int_{y_1}^{y_2} 2\pi y \sqrt{1 + \frac1{{x'}^2}}x'{\rm\,d}y \\
&= \int_{y_1}^{y_2} 2\pi y \sqrt{1 + {x'}^2}{\rm\,d}y \end{aligned})]
이다. 위 함수는 [math(S(x';\,y))]이므로 오일러 방정식 [math(\cfrac{\partial S}{\partial x}-\cfrac{\rm d}{{\rm d}y}\cfrac{\partial S}{\partial x'} = 0)]에 대입하면
[math(\dfrac{\rm d}{{\rm d}y}{\left( y\dfrac{x'}{\sqrt{1 + {x'}^2}}\right)} = 0)]
이다. 양변을 [math(y)]로 적분하면
[math(y\dfrac{x'}{\sqrt{1 + {x'}^2}} = a)]
이고, [math(a)]는 적분상수이다. 이를 [math(x')]에 대해서 풀면
[math(x' = \dfrac{{\rm d}x}{{\rm d}y} = \dfrac a{\sqrt{y^2 - a^2}})]
이다. 양변을 [math(y)]로 적분하는데, [math(y = a\cosh t)]로 치환해 보자.
[math(x = a \operatorname{arcosh}\dfrac ya + b)]
이고, [math(b)]는 적분상수이다. 따라서 곡선의 모양은
[math(y = a\cosh\dfrac{x-b}a)]
꼴이다. 이것은 현수선의 방정식이다. 현수선 문서와 비교해 보자.

1.4. 응용

물리적으로는 라그랑주 역학의 핵심인 최소작용의 원리를 수학적으로 표현한 것이다. 대표적으로 [math(x)]가 시간, [math(y)]가 변위, [math(f)]가 라그랑지언이라고 하면 라그랑지안 역학의 기본꼴이 되며, 에너지의 표현식을 알면 힘의 작용점 분석 없이도 운동방정식을 얻을 수 있다.

2. 관련 문서



[1] [math(y)] 및 [math(y')]의 변수 [math(x)]를 생략하는 경우도 있는데 이때에는
[math(\displaystyle J = \int_{x_1}^{x_2} f(y,\,y';\,x){\rm\,d}x)]
처럼 세미콜론을 이용한 표기도 쓰인다.
[2] [math(\alpha)]를 제외하고는 다 상수로 보고 미분한다.[3] 이것의 엄밀한 증명은 변분법의 기본정리를 참고하라.[4] 이 식은 간단하게 [math(\delta J = 0)]로 쓰기도 한다. 변분 참고.[5] 이것은 상당히 중요한 사실이다. 지금 [math(\alpha)]의 변화를 보고 있는데, [math(x)]는 [math(\alpha)]와 독립이고 [math(y)], [math(y')]만 [math(\alpha)]의 함수이다. 이것은 극값을 따질 때 [math(y)], [math(y')]의 변화만 보겠다는 것이다. 이를 통해 라그랑주 역학에서 액션이 시간의 변화와 관계 없다는 사실을 알 수 있다.[6] 사실 엄밀하게 이것은 변분법의 기본정리에 의한 것으로, 자세한 증명은 해당 문서에 있다.


#!if version2 == null
{{{#!wiki style="border:1px solid gray;border-top:5px solid gray;padding:7px;margin-bottom:0px"
[[크리에이티브 커먼즈 라이선스|[[파일:CC-white.svg|width=22.5px]]]] 이 문서의 내용 중 전체 또는 일부는 {{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/오일러 방정식|오일러 방정식]]}}}{{{#!if external != "o"
[[오일러 방정식]]}}}}}} 문서의 {{{#!if uuid == null
'''uuid not found'''}}}{{{#!if uuid != null
[[https://namu.wiki/w/오일러 방정식?uuid=b0fd401b-e22e-4e4e-b983-5403aec473e8|r156]]}}} 판{{{#!if paragraph != null
, [[https://namu.wiki/w/오일러 방정식?uuid=b0fd401b-e22e-4e4e-b983-5403aec473e8#s-|번 문단]]}}}에서 가져왔습니다. [[https://namu.wiki/history/오일러 방정식?from=156|이전 역사 보러 가기]]}}}
#!if version2 != null
{{{#!wiki style="display: block;"
{{{#!wiki style="border:1px solid gray;border-top:5px solid gray;padding:7px;margin-bottom:0px"
[[크리에이티브 커먼즈 라이선스|[[파일:CC-white.svg|width=22.5px]]]] 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
{{{#!wiki style="text-align: center"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="text-align: left; padding: 0px 10px"
{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/오일러 방정식|오일러 방정식]]}}}{{{#!if external != "o"
[[오일러 방정식]]}}}}}} 문서의 {{{#!if uuid == null
'''uuid not found'''}}}{{{#!if uuid != null
[[https://namu.wiki/w/오일러 방정식?uuid=b0fd401b-e22e-4e4e-b983-5403aec473e8|r156]]}}} 판{{{#!if paragraph != null
, [[https://namu.wiki/w/오일러 방정식?uuid=b0fd401b-e22e-4e4e-b983-5403aec473e8#s-|번 문단]]}}} ([[https://namu.wiki/history/오일러 방정식?from=156|이전 역사]])
{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid2 == null
'''uuid2 not found'''}}}{{{#!if uuid2 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph2 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]]){{{#!if version3 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid3 == null
'''uuid3 not found'''}}}{{{#!if uuid3 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph3 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version4 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid4 == null
'''uuid4 not found'''}}}{{{#!if uuid4 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph4 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version5 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid5 == null
'''uuid5 not found'''}}}{{{#!if uuid5 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph5 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version6 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid6 == null
'''uuid6 not found'''}}}{{{#!if uuid6 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph6 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version7 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid7 == null
'''uuid7 not found'''}}}{{{#!if uuid7 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph7 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version8 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid8 == null
'''uuid8 not found'''}}}{{{#!if uuid8 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph8 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version9 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid9 == null
'''uuid9 not found'''}}}{{{#!if uuid9 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph9 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version10 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid10 == null
'''uuid10 not found'''}}}{{{#!if uuid10 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph10 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version11 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid11 == null
'''uuid11 not found'''}}}{{{#!if uuid11 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph11 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version12 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid12 == null
'''uuid12 not found'''}}}{{{#!if uuid12 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph12 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version13 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid13 == null
'''uuid13 not found'''}}}{{{#!if uuid13 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph13 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version14 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid14 == null
'''uuid14 not found'''}}}{{{#!if uuid14 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph14 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version15 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid15 == null
'''uuid15 not found'''}}}{{{#!if uuid15 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph15 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version16 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid16 == null
'''uuid16 not found'''}}}{{{#!if uuid16 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph16 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version17 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid17 == null
'''uuid17 not found'''}}}{{{#!if uuid17 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph17 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version18 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid18 == null
'''uuid18 not found'''}}}{{{#!if uuid18 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph18 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version19 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid19 == null
'''uuid19 not found'''}}}{{{#!if uuid19 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph19 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version20 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid20 == null
'''uuid20 not found'''}}}{{{#!if uuid20 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph20 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version21 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid21 == null
'''uuid21 not found'''}}}{{{#!if uuid21 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph21 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version22 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid22 == null
'''uuid22 not found'''}}}{{{#!if uuid22 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph22 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version23 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid23 == null
'''uuid23 not found'''}}}{{{#!if uuid23 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph23 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version24 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid24 == null
'''uuid24 not found'''}}}{{{#!if uuid24 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph24 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version25 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid25 == null
'''uuid25 not found'''}}}{{{#!if uuid25 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph25 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version26 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid26 == null
'''uuid26 not found'''}}}{{{#!if uuid26 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph26 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version27 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid27 == null
'''uuid27 not found'''}}}{{{#!if uuid27 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph27 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version28 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid28 == null
'''uuid28 not found'''}}}{{{#!if uuid28 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph28 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version29 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid29 == null
'''uuid29 not found'''}}}{{{#!if uuid29 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph29 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version30 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid30 == null
'''uuid30 not found'''}}}{{{#!if uuid30 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph30 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version31 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid31 == null
'''uuid31 not found'''}}}{{{#!if uuid31 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph31 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version32 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid32 == null
'''uuid32 not found'''}}}{{{#!if uuid32 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph32 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version33 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid33 == null
'''uuid33 not found'''}}}{{{#!if uuid33 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph33 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version34 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid34 == null
'''uuid34 not found'''}}}{{{#!if uuid34 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph34 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version35 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid35 == null
'''uuid35 not found'''}}}{{{#!if uuid35 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph35 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version36 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid36 == null
'''uuid36 not found'''}}}{{{#!if uuid36 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph36 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version37 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid37 == null
'''uuid37 not found'''}}}{{{#!if uuid37 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph37 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version38 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid38 == null
'''uuid38 not found'''}}}{{{#!if uuid38 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph38 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version39 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid39 == null
'''uuid39 not found'''}}}{{{#!if uuid39 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph39 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version40 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid40 == null
'''uuid40 not found'''}}}{{{#!if uuid40 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph40 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version41 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid41 == null
'''uuid41 not found'''}}}{{{#!if uuid41 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph41 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version42 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid42 == null
'''uuid42 not found'''}}}{{{#!if uuid42 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph42 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version43 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid43 == null
'''uuid43 not found'''}}}{{{#!if uuid43 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph43 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version44 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid44 == null
'''uuid44 not found'''}}}{{{#!if uuid44 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph44 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version45 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid45 == null
'''uuid45 not found'''}}}{{{#!if uuid45 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph45 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version46 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid46 == null
'''uuid46 not found'''}}}{{{#!if uuid46 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph46 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version47 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid47 == null
'''uuid47 not found'''}}}{{{#!if uuid47 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph47 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version48 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid48 == null
'''uuid48 not found'''}}}{{{#!if uuid48 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph48 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version49 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid49 == null
'''uuid49 not found'''}}}{{{#!if uuid49 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph49 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}{{{#!if version50 != null
{{{#!wiki style="display: block;"

{{{#!wiki style="display: inline-block"
{{{#!if external == "o"
[[https://namu.wiki/w/|]]}}}{{{#!if external != "o"
[[]]}}}}}} 문서의 {{{#!if uuid50 == null
'''uuid50 not found'''}}}{{{#!if uuid50 != null
[[https://namu.wiki/w/?uuid=|r]]}}} 판{{{#!if paragraph50 != null
, [[https://namu.wiki/w/?uuid=#s-|번 문단]]}}} ([[https://namu.wiki/history/?from=|이전 역사]])}}}}}}}}}}}}}}}}}}}}}