최근 수정 시각 : 2025-05-06 13:05:21

뫼비우스 함수/성질


파일:상위 문서 아이콘.svg   상위 문서: 뫼비우스 함수
정수론
Number Theory
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
공리
페아노 공리계 · 정렬 원리 · 수학적 귀납법 · 아르키메데스 성질
산술
나눗셈 약수·배수 배수 · 약수(소인수) · 소인수분해(목록 · 알고리즘) · 공배수 · 공약수 · 최소공배수 · 최대공약수
약수들의 합에 따른 수의 분류 완전수 · 부족수 · 과잉수 · 친화수 · 사교수 · 혼약수 · 반완전수 · 불가촉 수 · 괴짜수
정리 베주 항등식 · 산술의 기본정리 · 나눗셈 정리
기타 유클리드 호제법 · 서로소
디오판토스 방정식 페르마의 마지막 정리 · 피타고라스 세 쌍 · 과일 분수방정식 문제 · 버치-스위너턴다이어 추측(미해결)
모듈러 연산
모듈러 역원 · 2차 잉여 · 기약잉여계 · 완전잉여계 · 중국인의 나머지 정리 · 합동식 · 페르마의 소정리 · 오일러 정리 · 윌슨의 정리
소수론
수의 분류 소수 · 합성수 · 메르센 소수 · 쌍둥이 소수(사촌 소수 · 섹시 소수) · 페르마 소수 · 레퓨닛 수
분야 대수적 정수론(국소체) · 해석적 정수론
산술함수 뫼비우스 함수 · 소수 계량 함수 · 소인수 계량 함수 · 약수 함수 · 오일러 파이 함수 · 폰 망골트 함수 · 체비쇼프 함수 · 소수생성다항식
정리 그린 타오 정리 · 페르마의 두 제곱수 정리 · 디리클레 정리 · 소피 제르맹의 정리 · 리만 가설(미해결) · 골드바흐 추측(미해결)(천의 정리) · 폴리냑 추측(미해결) · 소수 정리
기타 에라토스테네스의 체 · 윌런스의 공식
}}}}}}}}} ||


1. 정의2. 성질

1. 정의

[math(\tau(n))]은 [math(n)]의 양의 약수의 개수,
[math(\sigma(n))]은 [math(n)]의 양의 약수의 합,
[math(\phi(n))]은 [math(n)] 이하의 수 중 [math(n)]과 서로소인 수의 개수로 정의하자.

2. 성질

  • 곱셈적이지만 완전 곱셈적은 아니다.
    • 즉 [math((m,n)=1)]이면 [math(\mu(m)\mu(n)=\mu(mn))]이지만, [math(\mu(m)\mu(n)=\mu(mn))]이 언제나 성립하지는 않는다.
    • 예를 들어 [math(\mu(2)\times\mu(2)=1)]이지만 [math(\mu(2\times2)=0)]이다.
  • [math(\displaystyle\sum_{d|n}\mu (d)=[\frac{1}{n}]=\begin{cases} 1&(n=1)\\0&(n>1)\end{cases})]
  • [math(f(n)=\displaystyle\sum_{d|n}g(d))]이면, [math(g(n)=\displaystyle\sum_{d|n}f(d)\mu(\frac{n}{d}))]
  • [math(\mu(n)\mu(n+1)\mu(n+2)\mu(n+3)=0)]
    • 연속된 4개의 자연수에는 반드시 4의 배수가 있으므로 성립한다.
  • [math(\displaystyle\frac{\phi(n)}{n}=\sum_{d|n}\frac{\mu(d)}{d})]
  • [math(\displaystyle\sum_{n|d}\mu(\frac{n}{d})\tau(d)=1)][1]
  • [math(\displaystyle\sum_{n|d}\mu(\frac{n}{d})\sigma(d)=n)]
정수론이 아니라 대수학에서도 자주 쓰이는데, 소수 [math(p)]와 임의의 자연수 [math(n)]에 대하여 정수체 [math(Z_{p}\left[x\right])] 상에서의 [math(n)]차 모닉 기약다항식[2]의 개수는 다음과 같다.
  • [math(\displaystyle\frac{1}{n}\sum_{d|n}\mu(d)p^{\frac{n}{d}})]

[1] 디리클레 합성곱으로 나타내자면 [math(u=\mu * \tau)][2] 해당 체에서 인수분해되지 않는 기약다항식 중에서도 최고차항의 계수가 1인 다항식. 예를 들어서 유리수체 [math(\mathbb{Q})] 위에서 [math(x^2-2=0)]은 인수분해되지 않는 기약 다항식이지만, [math(\mathbb{Q})]에 [math(\sqrt{2})]를 추가하여 확장한 [math(\mathbb{Q}\left[\sqrt{2}\right])] 위에서는 [math(x^2-2=(x+\sqrt{2})(x-\sqrt{2}))]로 인수분해되어 기약 다항식이 아니다.

분류